(Category-IV) COMMON POOL OF GENERIC ELECTIVES (GE) COURSES OFFERED BY THE DEPARTMENT OF MATHEMATICS

GENERIC ELECTIVES (GE-2(i)): ANALYTIC GEOMETRY

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course	Credits	Credit distribution of the course			Eligibility	Pre-requisite
title &		Lecture	Tutorial	Practical/	criteria	of the course
Code				Practice		
Analytic Geometry	4	3	1	0	Class XII pass with Mathematic	NIL
					S	

Learning Objectives: The course aims at:

- Identifying and sketching curves, studying three dimensional objects, their geometric properties and applications.
- Use of vector approach to three-dimensional geometry makes the study simple and elegant.

Learning Outcomes: This course will enable the students to:

- Learn concepts in two-dimensional geometry.
- Identify and sketch conics namely, ellipse, parabola and hyperbola.
- Learn about three-dimensional objects such as straight lines and planes using vectors, spheres, cones and cylinders.

SYLLABUS OF GE-2(i)

UNIT – I: Conic Sections (15 hours)

Techniques for sketching parabola, ellipse and hyperbola; Reflection properties of parabola, ellipse, hyperbola, and their applications to signals; Classification of quadratic equation representing lines, parabola, ellipse and hyperbola; Rotation of axes; Second degree equations.

UNIT – II: Vectors, Lines and Planes

(18 hours)

Rectangular coordinates in 3-dimensional space, vectors viewed geometrically, vectors in coordinate systems and vectors determined by length and angle; Dot product; Projections; Cross product, scalar triple product, vector triple product and their geometrical properties; Parametric equations of lines, direction cosines and direction ratios of a line, vector and symmetric equations of lines, angle between two lines; Planes in 3-dimensional space, coplanarity of two lines, angle between two planes, distance of a point from a plane, angle between a line and a plane, distance between parallel planes; Shortest distance between two skew lines.

UNIT – III: Sphere, Cone and Cylinder

(12 hours)

Equation of a sphere, plane section of sphere, tangents and tangent plane to a sphere; Equation of a cone, enveloping cone of a sphere, Reciprocal cones and right circular cone; Equation of a cylinder, enveloping cylinder and right circular cylinder.

Recommended Readings:

- 1. Anton, Howard, Bivens, Irl, & Davis, Stephen (2013). *Calculus* (10th ed.). John Wiley & Sons Singapore Pte. Ltd. Indian reprint (2016) by Wiley India Pvt. Ltd. Delhi.
- 2. Narayan, Shanti & Mittal, P. K. (2007). *Analytical Solid Geometry*. S. Chand & Company Pvt Ltd. India.

Suggestive Readings:

- Bell, Robert J.T. (1972). *An Elementary Treatise on Coordinate Geometry of Three Dimensions*. Macmillan & Co. Ltd. London.
- George B. Thomas, Jr., & Ross L. Finney (2012). *Calculus and Analytic Geometry* (9th ed.). Pearson Indian Education Services Pvt Ltd. India.

GENERIC ELECTIVES (GE-2(ii)): INTRODUCTION TO LINEAR ALGEBRA

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title	Credits	Credit distribution of the course			Eligibility	Pre-requisite
& Code		Lecture	Tutorial	Practical/	criteria	of the course
				Practice		
Introduction to Linear Algebra	4	3	1	0	Class XII pass with Mathematic s	NIL

Learning Objectives: The objective of the course is:

- To introduce the concept of vectors in \mathbb{R}^n .
- Understand the nature of solution of system of linear equations.
- To view the $m \times n$ matrices as a linear function from \mathbb{R}^n to \mathbb{R}^m and vice versa.
- To introduce the concepts of linear independence and dependence, rank and linear transformations has been explained through matrices.

Learning Outcomes: This course will enable the students to:

- Visualize the space \mathbb{R}^n in terms of vectors and the interrelation of vectors with matrices.
- Understand important uses of eigenvalues and eigenvectors in the diagonalization of matrices.
- Familiarize with concepts of bases, dimension and minimal spanning sets in vector spaces.
- Learn about linear transformation and its corresponding matrix.

SYLLABUS OF GE-2(ii)

UNIT – I: Vectors and Matrices

(18 hours)

Fundamental operations and properties of vectors in \mathbb{R}^n , Linear combinations of vectors, Dot product and their properties, Cauchy-Schwarz and triangle inequality, Orthogonal and parallel vectors; Solving system of linear equations using Gaussian elimination, and Gauss-Jordan row reduction, Reduced row echelon form; Equivalent systems, Rank and row space of a matrix; Eigenvalues, eigenvectors and characteristic polynomial of a square matrix; Diagonalization.

UNIT – II: Vector Spaces

(12 hours)

Definition, examples and some elementary properties of vector spaces; Subspaces, Span, Linear independence and dependence; Basis and dimension of a vector space; Diagonalization and bases.

UNIT – III: Linear Transformations

(15 hours)

Definition, examples and elementary properties of linear transformations; The matrix of a linear transformation; Kernel and range of a linear transformation, The dimension theorem, one-to-one and onto linear transformations.

Essential Reading

1. Andrilli, S., & Hecker, D. (2016). Elementary Linear Algebra (5th ed.). Elsevier India.

Suggestive Reading

• Kolman, Bernard, & Hill, David R. (2001). *Introductory Linear Algebra with Applications* (7th ed.). Pearson Education, Delhi. First Indian Reprint 2003.